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Abstract

We present the design of the NeurIPS2020 Learning to run a Power Network chal-
lenge (L2RPN)|H power networks transport electricity across states, countries and even
continents. They are the backbone of power distribution, playing a central economi-
cal and societal role by supplying reliable power to industry, services, and consumers.
Their importance appears even more critical today as we transition towards a more
sustainable world within a carbon-free economy, and concentrate energy distribution
in the form of electricity. Problems that arise within the power network range from
transient brownouts to complete electrical blackouts which can create significant eco-
nomic and social perturbations, i.e. de facto freezing society. Grid operators are still
responsible for ensuring that a reliable supply of electricity is provided everywhere,
at all times. With the advent of renewable energy, electric mobility, and limitations
placed on engaging in new grid infrastructure projects, the task of controlling existing
grids is becoming increasingly difficult, forcing grid operators to do “more with less”.

This challenge is the latest round in a series of power network control challenges
whose objectives have been to progressively test the potential of reinforcement learning
(RL) to address this important real-world problem: controlling electricity transport in
power networks running closer to their operational limits while keeping people and
equipment safe. While initial competitions tested the feasibility of developing realis-
tic power network environments and the applicability of RL agents, this competition
introduces a realistically-sized grid environment along with two fundamental real-life
properties of power network systems to reconsider while shifting towards a sustainable
world: robustness and adaptability.

"https://12rpn.chalearn.org/


https://l2rpn.chalearn.org/

Keywords

Reinforcement Learning, Robustness, Adaptability, Industrial Control, Real-World RL,
Safety, Smart Grids, Stochastic environment, Renewable Energy, Climate Change, Sus-
tainable World

1 Introduction

1.1 Background

Electrification has played a prominent role in the development of modern societies in the
past century. Some institutions such as the National Academy of Engineering acknowledge
it as the number one engineering achievement of the 20th century ﬂ Electricity has now
become a commodity, and power networks transporting electricity across states, countries,
and continents are essential components of modern societies. Such grids play a central eco-
nomical and societal role by supplying reliable power to industry, services, and consumers.
Electrical transmission is not a simple task, however, and requires 24/7 monitoring and
control of the grid to avoid electricity blackouts, which can lead to significant losses and
delay in public services and strategical industries. Grid operators are skilled engineers,
in charge of ensuring that a reliable supply of electricity is provided everywhere and at
all times. As surprising as it may be, their task is becoming increasingly difficult in the
digital era because efforts made to automate operation are insufficient and they have to
constantly examine massive amounts of data in real-time [13]. In the face of a resurgence
of blackouts in modern but aging grids (California, New York, Australia, The UK in 2019),
new developments are becoming urgent to keep operating robust grids [I1]. Electricity
should be a reliable commodity, especially for those in less densely populated
areas with more difficult access to public services. Power systems are in some
sense archaic, complex, “artificially intelligent”E] systems currently in operation, and they
are in great need of 21st century innovation to manage the increasingly complex task of
satisfying electricity demand, all while using renewable energies and opening market ex-
changes. Renewable sources such as wind and solar are intermittent sources of energy due
to their dependence on meteorological conditions. Also, while providing opportunities for
exchange, electricity markets bring in their own variability and uncertainties in the sys-
tem. As with most national power network operators, the French national grid operator,
Réseau de Transport d’Electricité (RTE), is undergoing rapid and profound changes under
a steep energy transition. This places new flexibility and reactivity requirements on the
smart grids of the future. Adaptability is key for the power network to fully reach its

2Electrification among the 20" century greatest achievements http://www.greatachievements.org/

3 Although outside the scope of our this challenge design, it is important to point out that the current
control algorithms for the grid are complex & distributed already, and leverage notions of optimization and
prediction.
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potential in mitigating climate change by allowing for total de-carbonization of
our energy system, doing this under a sustainable approach with as little new
infrastructure footprint as possible.

Rather than relying on additional hardware (e.g. more transportation lines), new soft-
ware that could operate the grid with the latest artificial intelligence (AI) could be a
game-changer towards optimizing the usage of existing assets [5]. In the community of
power systems, optimal control methods [3] have fallen short because they are neither able
to scale to multi-step time horizons, nor deal well with the large, non-linear combinatorial
action space. Humans, perhaps surprisingly, are effectively still in charge of operating the
grid in near real-time. With recent breakthroughs, reinforcement learning [14] 2](RL), is a
promising avenue to develop artificial agents capable of operating acomplex power system
in real-time.
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Figure 1: L2ZRPN quick overview: an agent first observe the power network state at
time t with flows y in power lines given injections x, aka productions and consumptions.
An overload (red line) occurs on the grid: the agent gets a negative reward from the envi-
ronment, since the grid is at stake. The agent hence take a discrete node splitting remedial
action at time t. 3 node splitting actions would have been possible at this 4 connectable
element location: the number of possible node splitting actions increases exponentially
with the number of connectable elements. While productions and consumptions change at
t+1, the problem is solved and the agent gets a better reward.

1.2 Open Real-World Research Challenge

The Learning to Run a Power Network (L2RPN) challenge aims at enabling significant ad-
vances in solving an important, real-world problem of great societal importance. The safe
and efficient transmission of electricity in the face of strong production and consumption
shifts while limited in grid capacity expansion is one of the primary engineering hurdles
for humanity’s transition to zero-carbon energy. This has a positive societal impact both
in highly developed nations and in those whose power networks are still being developed,
enabling vital services ranging from household lighting to functional hospitals. This new



challenge is also of prime interest to the RL community to make advances in the
field by addressing a real-world problem, generalizing RL methods to work on out-
of-distribution events as well as non-stationary and complex environments. The challenge
is centered around a simulator that represents the underlying complexities of real-world
grid operations. This work is an important joint effort, bringing together collaborators
in research (INRIA, UCL, Turing Institute, Google Research, Kassel University, Lab41 -
US research lab) and a power system consortium (RTE, NREL - the American National
Laboratory for Renewable Energies, EPRI - the Electric Power Research Institute, pan-
dapower team - the open-source power network simulation library, TenneT - the national
grid operator of the Netherlands and large parts of Germany). The collaborative group
released a white paper as a companion for this design paper to explain in simple terms
the different necessary concepts of a power network and power network operations, and to
highlight upcoming challenges on which RL could help [10].

This challenge uses a game-like simulation environment emulating a real power net-
work, in which participants build grid-operating agents with real-time control of the power
network structure. These agents are responsible for safe and efficient grid operation, while
respecting the physical constraint of balancing the supply and demand of energy and fol-
lowing temporal operational rules. The open-source simulation environment is based on
the Grid2Operate platform, runs with pandapower power network simulator backend[15],
and implements the OpenAI Gym API[I]. Grid20perate models realistic concepts found in
real-world operations used to test advanced control algorithms. We, the organizers, provide
encouraging baseline results suggesting RL solutions may improve upon trivial benchmarks
such as a static policy or expert systems.

Although many power network simulators exist, few framework are built to be used as a
game-like simulator for training and evaluating RL agents, as illustrated in Figure|l] To our
knowledge, this is the only open-source game-like simulator built for grid operation simula-
tion and in direct collaboration with a large-scale grid operator. This ensures grounding of
our test cases, modeling of real-time operations and the simulation of grid design choices.
In the long term, this testbed platform will enable the research community
to address new questions by creating new synthetic environments, and running new
experiments and benchmarks to identify relevant new policies. Another project, funded by
the United States Department of Energy, follows a similar avenue though with a focus on
industrial implementation rather than for research purposesﬂ

This competition is held by having participants train their agents on a series of pre-
defined scenarios. They may then evaluate their agent on hidden validation scenarios
having the same grid layout but under different weather, production, consumption condi-
tions and events. The Codalab challenge platform assesses submissions and ranks them
accordingly on a public leader board. The ultimate goal of the competition is to encourage

‘HADREC Arpa-e project https://arpa-e.energy.gov/7?q=slick-sheet-project/
high-performance-adaptive-deep-reinforcement-learning-based-real-time-emergency
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research in the next-generation grid control, with the hope of demonstrating the abilities
of current methods to successfully solve harder tasks, as well as encouraging various na-
tional grid operators to adopt next-generation machine-learning-based control strategies.
Hopefully, this contributes to creating a community around machine learning methods for
power system control, so that these two historically rich but disjoint communities join
forces. The challenge aims at attracting a community of researchers around the globe with
diverse geographic demography so that nations of the global South can participate and be
introduced to these control strategies and hopefully leap-frog when it comes to modernizing
their infrastructure and resources. The challenge can be an eye-opener for communities
to avoid investing in traditional power network expansion and instead increase reliance
on advanced machine learning and Al-based control that would help the world reach a
sustainable zero-carbon emission more efficiently.

2 Novel challenge design

L2RPN (Learning to Run a Power Network) is a challenge series we started in 2019, which
is, to our knowledge, the only one of its kind. Before the NeurIPS2020 competition, we
organized two smaller scope challenges to iron out our competition protocol and get ready
to scale up tasks for NeurIPS participants to a larger realistic power network (corresponding
to the state of California, USA). Figure[2|shows an example of previous L2RPN competition
pagd’}

The common objective of the entire challenge series is to advance towards empower-
ing existing 20"" century power infrastructure with artificial intelligence to become 215
century long awaited “smart grids”. Al can greatly enhance the capabilities of current
power network controllers. On one hand, such novel controllers should reduce opera-
tional cost for daily operations and improve grid robustness. On the other hand, in
mid-term to long-term computationally intensive studies, the integration of adaptive and
intelligent controllers should reduce the grid footprint when integrating new en-
ergy resources. After two initial competitions that validated both the feasibility of our
synthetic power network environments and the viability of reinforcement learning, this new
competition will be a key milestone in Al research having real-world impact on existing
power networks.

IJCNN 2019 & 2020 - L2RPN Feasibility Challenges: A significantly reduced
version of the NeurIPS challenge was first run at IJCNN 2019 [12] on a standard academic
power network case (IEEE 14 grid). This demonstrated that RL approaches can accommo-
date the high combinatorial space and adequately change grid connectivity patterns, i.e.
the grid’s topology, to avoid certain blackout and efficiently manage the power flows on
scenarios. There exists no other automated methods beyond the simplest level of “branch
switching” [7], even on small grids. A second follow-up competition has also run for IJCNN

5Codalab WCCi competition page: https://competitions.codalab.org/competitions/24902
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A forum is available for comments, suggestions and help on discord: https;//discord.gg/cYsYrPT.
The Grid2op documentation can be found here: https//grid2op.readthedocs.io/en/latest/

If you would like to get familiar first with the problem and make your hands on quickly, a sandbox competition on
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The L2ZRPN Challenge

Power grids transport electricity across states, countries and even continents. They are the backbone of power
distribution, playing a central economical and societal role by supplying reliable power to industry, services, and
consumers. Their importance appears even more critical today as we transition towards a more sustainable world
within a carbon-free economy, and concentrate energy distribution in the form of electricity. Problems that arise
within the power grid range from transient brownouts to complete electrical blackouts which can create significant
economic and social perturbations, i.e.de facto freezing society. Grid operators are still responsible for ensuring
that a reliable supply of electricity is provided everywhere, at all times. With the advent of renewable energy,
electric mobility, and limitations placed on engaging in new grid infrastructure projects, the task of controlling
existing grids is becoming increasingly difficult, forcing grid operators to do "more with less”. This challenge aims
at testing the potential of Al to address this important real-world problem for our future.
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Figure 2: Ilustration of Codalab challenge platform page for L2ZRPN WCCI Competition



2020 challengeﬂ which tested the scalability of such methods on a larger grid (1 region out
of 3 on the IEEE 118 grid) while dealing with new discrete events such as planned main-
tenance.

Neurips 2020 L2RPN in a Sustainable World Challenge: The NeurlPS2020
challenge evaluates artificial agents on environments addressing current real-world chal-
lenges related to robustness and adaptability. Successful agents may demonstrate to the
power system community the practical applicability of these methods on real-world grid
operations and investments. This is the main point of novelty of this challenge compared
to our previous feasibility-related challenges. The NeurIPS2020 challenge significantly ex-
tends our previous smaller challenges in the following ways:

1. Real-sized grid: The IEEE 118 grid is approximately the size of some European
countries’ transmission grids and has also been used in research to represent the Cal-
ifornian grid for instance [9]. It is the most studied grid in power network literature.

2. Realistic stochastic time series: Collaboration with NREL enabled us to cre-
ate time series with realistic dynamics and production intermittence for renewable
energies, which will be the largest source of variability in coming years.

3. High-dimensional continuous and discrete state and action spaces: The
NeurIPS2020 challenge allows agents to perfom continuous actions such as produc-
tion re-dispatching, in addition to discrete combinatorial topological actions. Power
production is now the result of both exogenous (programmed) and endogeneous (cor-
rective action) decisions, which in combination with an increase in grid size in turn
increases the space dimensionalities. This is further explained in subsection 1.3.1 and
summarized in Figure

4. Out-of distribution adversarial attack: The participants are tested in the robust-
ness track on adversarial hazardous events properly selected by challenge organizers.
This should favor RL approaches with notions of safety.

5. Non-stationary environments: The adaptability track has distribution shifts in
production with increasing renewable energy and decreasing thermal production.
This might favor meta learning or model-based approaches.

In addition to providing more realistic scenarios that aim to convince grid operators
to seriously consider machine learning approaches, our challenge also provides a platform
that instantiates general challenges to real-world RL as well. The uptake of RL in real-
world systems is hindered by a series of challenges [6], which we manifest through multiple
aspects of our environment: safety, high-dimensional state/action spaces, non-stationarity
and unspecified reward functions. As these are all present in our challenge environment,

62020 IJCNN Competition: https://wcci2020.org/competitions/
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contributions are likely to also produce general algorithmic contributions for real-world
RL.
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Figure 3: Successive challenges in L2RPN series: maintenance events and redis-
patching actions are successively introduced, while the grid size increases and new harder
game objectives are defined such as robustness and adptability.

3 Data & Environment

As this is a RL competition, instead of a single dataset, we provide a whole environment in
which participants can train and evaluate their agents. The environment is very compre-
hensive, however, its underlying complexity is hidden to the participants. The effective
barrier of entry to novice participants is very low, as can be appreciated by the
sample code provided in Figure [7| This is important to engage new machine learning par-
ticipants. We also provide a GUI interface to help participants understand the problem
and get an intuition of the tasks and the effectiveness of various agents.

Our recent paper [12] describes what we considered as an environment and how we de-
signed one for our first challenge. We summarize here the key elements and then highlight
our new developments. Specifically, we developed a new framework, Grid20perate, allow-
ing for more modularity, robustness and complexity compared to our previous pypownet
platform. It has been regularly used and tested by our collaborators throughout its de-
velopment, with the goal of becoming the reference platform for real-time power network
operation research.



Features IJCNN 2019 |1JCNN 2020 Neurips Track 1 Neurips Track 2
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Figure 4: Differences in L2RPN series: new features along challenges lead to more
realistic and complex control problems (red highlights when the feature does not exist or
is very simplistic, in green when its dimension is complex, in orange when in between).

3.1 Environment Description

A power network environment is the combination of the following components, most already
described in [I2] and illustrated on Figure

e A power network (with substations and powerlines of different characteristics) and
a grid topology 7(t), represented as a graph. The IEEE 118 scenario is chosen for
this challenge as previously discussed.

e Real-time power injections (productions and consumptions) x(t) and stochastic fore-
casts of the upcoming time-step X(t+1[t).

e Events Ev(t) such as maintenance (deterministic) and line disconnection contingen-
cies (stochastic). Events are a novelty this year.

e Line Capacities y;jm and additional operational rules such as reaction time, activation
time or recovery time applicable to actions taken by the agent.

e Terminal conditions such as not being able to supply the necessary power after a
cascading failure on the grid, or not finishing a scenario in the allocated time.



Sunday 15 Jan 0400 340

Historical total consumption

Topology T(t)

Injections x(t)

Last 24h lines capacity usage

Flows y(t)/ylim

~_/\--w

Number of overflows

Events Ev(t)

Figure 5: Illustration of L2ZRPN Environment: injections x(t), events Ev(t) and a
grid topology 7(t) induces flows y(t) in every power lines that the agent needs to manage.

The line power flows y(t) are computed by a power-flow simulator (pandapower). The
Grid20p framework then allows, as latter described, some interactions for an agent with
this physical simulator through actions a(t). Participants have the option to simulate
the effect of their action before choosing the next time step forecast, though by using
additional computation time budget. More explanations can also be found in our

white paper[10].

Agent Actions: There exists two families of actions: one permits topology changes
(discrete and combinatorial actions) while the other allows production changes (continuous
actions) for safety reasons, while previously set by the market.

The topology can be changed by switching on and off power lines (about 100 possible
unitary actions on IEEE 14 with 20 lines - this number scales linearly with the power
network size) or by node splitting actions as in Figure [1| (about an additional 100 unitary
actions on IEEE 14 with 14 substations - this number grows exponentially with the size of
grid).

The productions can also be changed with respect to physical properties such as maxi-
mal and minimal possible production per power plant as well as on the maximum possible
increase or decrease for each power plant between consecutive time-steps. An agent can
choose to increase or decrease the power of a production unit leading to a continuous action
space having a dimension equal to the number of generators on the grid.

10



3.2 Environment Formalisation

We can formalise the environment as a Markov Decision Process (MDP). A MDP can be
defined as a tuple (S, A, p,r), where an agent observes a state s; € S and takes an action
at € A at timestep t. From state s; and taking an action a;, an agent arrives in a new state
St+1 with probability p(sit1]s¢, ar), and receive a reward r(sq, at, S¢+1). Our environments
are episodic, which is to say that they last a finite number of timesteps, 1 <t < T.

MDPs generally respect the Markov property, which states that all the information
necessary to generate s;y1 can be found in s; and a. In our case, however, the state is
partially observed, which means that underlying dynamics such as demand, weather, and
other events at sy;11 can not be necessarily predicted given the information present in
t1. We a certain abuse of notation, we consider the observation and state at time to be
equivalent in the eyes of the agent, denoting it s;. Default representations of s, a; and of
the reward function are provided, but participants are free to adapt them to their needs.

Participants can access the information they find necessary by querying the simulator at
each timestep, and constructing the state representation as they see fit using the Grid20p
“Observation” object that can be easily cast into a numeric vector. The same holds for
actions they send that can be easily transformed to / from more numeric vectors. The func-
tionning of these conversion is extensively explained in some tutorials already availabl(—ﬂ
Additionally, although there is a score function defined in Sec. |5 participants are free to
define their own reward function, as balancing the various objectives is not necessarily best
done by simply joining them into a global reward function. Interesting properties of our en-
vironments (real-sized, stochastic, out-of-distibution adverserial attacks, high-dimensional
action spaces non-stationnary) have been described previously in Sec.

3.3 Datasets for the competition

Multiple hundreds of yearly scenarios at 5 minutes resolution are available as a training set,
generated with ChroniX2Grid package EL and can be easily downloaded with grid2op (if the
environment is new it is downloaded automatically, otherwise the previously downloaded
version is used) .

import grid2op
env = grid2op.make(”12rpn_casel4d _sandbox”)

1] "

# the variable "env" implements the complete open ai gym interface

Figure 6: How to import a new environment using the grid2op framework

A few dozens of weekly scenarios carefully selected under specific criteria are kept secret,

“In the getting started section of the Grid20p framework https://github.com/rte-france/Grid20p/
tree/master/getting_started| and especially the notebook ”4_TrainingAnAgent”
®ChroniX2Grid github: https://github.com/mjothy/ChroniX2Grid/tree/master/chronix2grid

11
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using half for evaluation on Codalab during the competition and the other half for testing
at the end of the competition, as further described in “Metrics” section.

3.4 Grid20perate open-source framework

Even though the addressed problem of controlling power systems is novel for the Al com-
munity, a lot of care have been taken to ensure that participants can interact with it in
a familiar way. The Grid2Operate framework (detailed in Figures |§| and allows easy
manipulation of the power network using the reinforcement learning framework “OpenAl
Gym”. This framework is widely used by the RL community and has been successfully
used last year for the MineRL competition [§].

The Grid20perate framework comes with multiple environments already available for
testing and training at the time of writing. These environments vary in size (from a 5
substations system as a tutorial, to systems with 118 substations on which they will be
tested) and difficulty. For example, Figure shows how to simply interact with the Grid20p
environmeniﬂ once an agent is defined. Another capability of grid2op is to render the power
network represent an observation for the “case5_example” environment as in Figure[§ which
helps demonstrate how to use the platform and quickly analyze the environment.

In addition to all this material, some baselines were also made available to the partici-
pants (see subsection for more details).

The baseline code is open-sourced E easily importable and usable by participants.
Some explanations on the nature of these baselines were also be made available.

We now describe the high-level Grid20perate framework architecture.

Environment class Fully compatible with the RL framework Open Al gym, this envi-
ronment implements the widely used “env.action_space”, “env.observation_space”, “env.step()”
or “env.render()”. A special care has been taken to facilitate the use of this package with-
out requiring understanding the full details of the physics behind power systems. For the
Robustness Track (see subsection 4] for more information) the environment also bears an

” Adversarial actor“ which takes actions given a specific budget in response to the action

of the Agent.

Action class This class represents the way the “Agent” interacts with the Environment.
It can be represented either as an object (default representation), or a Vectorﬂ when this
makes it easier to use. For the target environment of the second track of this challenge we

9Github does not allow natively to run a notebook, to try it yourself, you may want to clone the github
repository or use the MyBinder tool at https://mybinder.org/v2/gh/rte-france/Grid20p/master

1°T.2RPN Baseline github: https://github.com/rte-france/12rpn-baselines

HUtilities are provided to make the conversion from one type to another as easy as possible. This process
is also illustrated in a dedicated notebook for improving clarity.

12
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import grid2op
from grid2op.Agent import RandomAgent
env = grid2op.make(”12rpn_casel4_sandbox”)
my_agent = RandomAgent(env.action_space)
done = False
reward = env.reward_range[0]
obs = env.reset()
while not done:
# optional
# env.render ()
action = my_agent.act(obs, reward, done)
obs, reward, done, info = en.step(act)

Figure 7: Example of code running a baseline agent. In this example code, we
show how to create the example environment “caseb_example”, how to initialize a baseline
agent, in this case the “DoNothing” Agent (see subsection for more details) and how
to assess its performance on this environment. A lot of programming effort has been put
to offer an interface fully compatible with OpenAl gym. More baselines, example codes
and material to get started with grid2op can be found on the official github repository at
https://github.com/rte-france/Grid20p.
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Figure 8: Visual representation of a grid2op Observation. The Grid20perate frame-
work allows people to easily inspect an observation. One of the method is to represent it
as a graph. Participant can zoom in / out, focus on a specific part of the grid. The in-
teractive version of this plot can be found in the jupyter notebook https://github.com/
rte-france/Grid20p/blob/master/getting_started/Example_bbus.ipynbl
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Figure 9: At time ¢, the agent receive a reward [scalar] and an observation [object convert-
ible to vector| from the environment (1). The Agent then produces an action (2). This
action is sent int turn to the environment (3). The environment is further updated with
new chronic values (4). The pandapower backend start its computation (5).
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Figure 10: The powerflow solver (pandapower) is run (6). It allows the environment to
retrieve grid state information through an API (7). Is also checked whether an action is
valid or not, hence considered or ignored. New Observations and reward signal from the
environment are sent to the agent at time t+1 (8). In case of a game over, it terminates.
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use a power network with 118 substations. A dense representation of this vector counts
1 500 components as summarized in Figure However, if we use a more standard rep-
resentation of the action space, in the form of a one-hot sparse vector, this takes 22 000
independent unitary discrete independent actions. To reduce the size of the action space,
the organizers might select among these actions the most relevant ones to help the partic-
ipantsp—_?l In addition to this discrete action space, 60 continuous actions on the thermal
generators, which production can be adapted in real time, are available.

Observation class The observation space is composed of all the data that can be ex-
tracted from the power network. It is made of continuous components (loads, productions,
flows, voltages, etc.) and some discrete components (line status, can a powerline be recon-
nected?, topology vector, etc.). For this competition it has a size of 4 200. Unlike more
classical reinforcement learning frameworks, a function called ”simulate” is also available,
to mimic the operational process (in which operators can use simulators to compute the
possible outcome of some actions) and make the problem more tractable. This function
allows the participants to simulate the effect of their action on a forecasted snapshot of
the powergrid state. This can serve two major purposes: (1) to validate that an action is
effective and (2) to explore new actions when training.

4 Tasks and application scenarios

Inspired by some of the high-level difficulties present in controlling real-world power net-
works, we have decided to put forward robustness and adaptability as the high-level tasks
we want to challenge participants with. For both of these tasks, the constraints related to
safety, production contracts and occasional planned & un-planned interruptions are also
be present. As these track environments are built upon a previous IJCNN 2020 challenge,
which will remain open as a benchmark, participants will be able to gradually develop and
test their agents towards succeeding at these more advanced tracks.
We now describe more precisely the two tracks that were illustrated on Figure

Robustness Track: For the last decades, developed power networks have tried to
remain robust to unexpected events following a simple guiding “N-1” redundancy principle:
the system should keep operating in nominal conditions despite the loss of any single asset
such as lines or power plants at any time. Operators hence anticipated through forecast
and simulations the effect of having any line disconnected in the hours to come. This very
fundamental property has been the root of power system success: distribute electricity
reliably, throughout the grid, at all times. However, since we are pushing these aging
systems towards their limits, this redundancy constraint is no longer easy to satisfy. In

12This pre-selection aims at helping the participants. If some participants wants to use the full size action
space, they are be allowed to.
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addition, climate change can potentially lead to more frequent and extreme weather events
which have to also be accounted for{l—_gl Operators now need to consider more generic
worst-case scenarios [4], pushing redundancies to N-2 (there are 40 000 N-2 contingencies to
consider compared to 200 N-1 contingencies on the 118 IEEE grid). In addition to this, the
temporal resolution is moving to 15 minutes sampling and refresh rates instead of 3 hours
used previously. Because of computation time budget constraint in real-time operations,
not every contingency can be studied on this forecasting horizon. There is therefore a
need for new methods to be robust to worst-case events in a sample-efficient
and real-time manner.

To encourage work in this higher-risk setting, we define an adversarial environment
where adversarial actors can dynamically attack the grid. Extending the environment of a
preceding IJCNN 2020 competition, an agent designed by the organizing team will choose
adversarial attacks under some budget, mainly in terms of line disconnection frequency
and duration constraints, and apply it to this former environment. The attacks of the
adversarial actor will be designed to consistently disrupt previously winning agents from
the IJCNN challenge. We might limit the possible attacks to a specific set of selected
line disconnections to keep it manageable for the participants. New submissions in this
adversarial environment will have to be robust to those worst-case events on new test
scenarios. Simple adversarial actors will be made available to the participants for training,
while not revealing the full adversarial actor used during evaluation. As a real-life use case,
this approach is inspired by the way in which power network operators such as RTE test
identified potential cases of attacks (cyber, climate) on vendor controller solutions to assess
their robustness. Al agents will therefore also need to respond well to these scenarios if
they want to be considered for use in real systems.

Adaptability Track: With the current strong trend of de-carbonization of power
production, the energy mix is moving to a significantly greater share of renewable produc-
tion, which comes with production irregularities that are harder to predict. At the same
time, national infrastructure projects are less frequent, and the national grid can no longer
grow as quickly as in the past. As power line construction is limited, the current grid must
be flexible enough to adapt its operations to this new energy mix that it was not originally
designed to handle.

Given these constraints, grid operators would like to understand how adaptable AI-
based grid controllers can be to changing supply and demand patterns, given
a static grid capacity. In the end, they would like to assess how much more flexibility
AT controllers can offer to avoid new costly investments in the future in line with [9]. In
the spirit of this question, our second track asks participants to create agents that can
deal both with today and tomorrow’s energy mix while relying on the same underlying
grid. This non-stationary scenario allows us to test agents’ abilities in adapting to evolving

13The storm of 1999 in France had a formidable impact on grid infrastructure: https://www.rte-france.
com/l-heritage-de-la-tempete/
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changes in grid use. We provide training scenarios with both types of supply & demand
patterns for training. Participants will then be tested on new unseen scenarios that can
come from either energy mix without identifying the type of scenario. We imagine more
complex methods such as model-based or transfer learning methods could help succeed
in this track. As a real-life use case, this approach is inspired by the way in which RTE
studies the capability of integrating new renewable resources in the future to make relevant
recommendations to the government and civil society to enter a sustainable world.

One of the hopes of using learned agents for grid control is that these agents will discover
novel strategies that could be used effectively in live scenarios. In the spirit of AlphaGo
demonstrating totally novel ways in which the game of Go can be played, we believe
it will be very interesting to discover strategies found by artificial agents in the face of
difficult control scenarios. For instance, it remains largely unknown today how much
flexibility an existing grid topology can eventually offer when controlled widely
at a high frequency because of its non-linear combinatorial complexity. Identifying new
unknown but applicable strategies would already be a great step towards smarter grids.

For each track, baselines are available to the participants at the beginning of the com-
petition. New stronger baselines could be released in the second half of the challenge to
stimulate competition.

5 Metrics

While participants can design their own reward when training their agent, the principle
of a challenge requires there to be an objective score at evaluation time. As electric grids
are more and more modeled as live market exchanges, almost all of the grid’s operational
characteristics can be converted into a monetary cost. Therefore, the score reflects the
realistic operational costs of a power network, which grounds the algorithmic performance
of proposed agents in a very real-world quantity: money.

To begin with, we recall that transporting electricity always generates some energy
losseﬁ Eloss(t) due to the Joule effect in resistive power lines at any time t:

ny

gloss(t) = Zrl * yl(t)2 (1)

=1

At any time t, the operator of the grid is responsible for compensating those energy losses by
purchasing on the energy market the corresponding amount of production at the marginal
price p(t). We can therefore define the following energy loss cost ¢jpss(t):

closs(t) = gloss(t) *p(t) (2)

14This energy loss corresponds to 2.2% of the total energy consumption on high voltage power networks:
https://bilan-electrique-2018.rte-france.com/loss-rate/?lang=en
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Topological action can increase or decrease Er,0s5(t). This already leads to a continuous
optimization problem to solve. Energy losses cost RTE 500 million €/year, so a gain of
20% would already save 100 million €/year.

Then we should consider that operator decisions when taking an action can induce costs,
especially when requiring market actors to perform specific actions, as they should be paid
in return. Topological actions are mostly free, as the grid belongs to the power network
operator, and no energy cost is involved. However, redispatching actions involve producers
which should get paid. As the grid operators ask to redispatch energy € redispaten (t), some
power plants increase their production by & cdispatcn (t) while others compensate by decreas-
ing their production by the same amount to keep the power network balanced. Hence, the
grid operator pays both producers for this redispatched energy at a cost Credispatching(t)
higher than the marginal price p(t) by some factor a:

CTedispatching (t) =2x gredispatch * ap(t)a (0% 2 1 (3)

Security Operational Cost on German power system
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' Generation spilling cost (renewable energies)

Figure 11: Undesirable 1 billion/year operational cost sharp increase in Ger-
many in recent years after quick installations of renewables without developing new flexi-
bilities

If no flexibility is identified or integrated on the grid, operational costs related to

redispatching can dramatically increase due to renewable energy sources as was the case
recently in Germany with an avoidable 1 billion €/year increaselEl illustrated on

Figure [T1]

German power system operational cost https://allemagne-energies.com/2018/06/19/
allemagne-14-milliards-deuros-pour-stabiliser-le-reseau-electrique-en-2017/
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We can hence define our overall operational cost coperations(t):

Coperations (t) = Closs (t) + Credispatching(t) (4)

Formally, we can define an ”episode” e successfully managed by an agent up until time
tena (over a scenario of maximum length T¢) by:

€ = (017a17027a27'"7atend_170tend) (5)

where o; represents the observation at time ¢ and a; the actions the agent took at time t.
In particular, o1 is the first observation and oy, is the last one: either there is a game over
at time tqnq or the agent reached the end of the scenario. An agent can either manage to
operate the grid for the entire scenario (teng = Te) or fail after some time ¢o,q because of a
blackout. In case of a blackout, the cost ¢pjackout (t) at a given time t would be proportional
to the amount of consumption not supplied Load(t), at a price higher than the marginal
price p(t) by some factor 3:

Cblackout(t) = LO&d(t) * /8 * p(t)7 /8 P 1 (6)

Notice that Load(t) >> Eedispatch(t), Eloss(t) which means that the cost of a blackout is a

lot higher than the cost of operating the grid as expected. It is even higher if we further

consider the secondary effects on the economy[¥} Furthermore, a blackout does not last

forever and power networks restart at some point. But for the sake of simplicity while

preserving most of the realism, all these additional complexities are not considered here.
Now we can define our cost ¢ for an episode:

tend Te
C(B) = Z Coperations (t) + Z Cblackout (t) (7)
t=1 t=tlend

We still encourage the participants to operate the grid as long as possible, but penalize
them for the remaining time after the game is over, as this is a critical system and safety
is paramount.

Finally, participants will be tested on IN hidden scenarios of different lengths, varying
from one day to one week, and on various difficult situations according to our baselines.
This will test agent behavior in various representative conditions. Under those episodes,
our final score to minimize will be:

N

Score = Z c(e;) (8)

=1

More information can be found on this blackout cost simulator: https://www.blackout-simulator.
com/|
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This score applies to both tracks, and highlights both the necessary cost of robustness
in the first track, and the cost of adaptability in the second track. Participants who finish
all the episodes, while optimizing for energy losses and minimizing the cost of their actions
will in the end get the best rankings. Failing at even one episode will significantly
hinder the chances of one participant to win the competition. Keeping hidden the
test episodes prevents participants from overfitting on the episodes they have used during
training.

Scaling of the score To improve the properties, readability and representativity of our
score, based on our experience from the first competitions, we decided to rescale it. First,
the raw score defined previously has to be minimized. But it feels more natural to rank
participants according to a higher score. Second, the raw score for a given scenario lives in
the range of millions to billions. This is not easily readable for any human, and it makes it
hard to represent what would be the best reachable score. Finally, the raw score is mainly
driven by the operational cost of blackouts and very little by optimizing energy losses (at
least 2 order of magnitude difference in cost). So we wanted to more strongly encourage
participants to optimize the continuous operational cost induced by energy losses , while
still being robust to blackouts.

To address all these issues we decided to scaled the score in the following way, which is
also illustrated in the figure

1. to scale the score on a fixed range, from -100 (corresponding to a complete blackout
during all the scenario) to +100 (corresponding to a large decrease in the system
losses while managing the scenario completely - this is a ”cheating agent” as all the
safety considerations of the grid were disable, this represents an upper bound on what
is possible).

2. to assign the best agents a score close to 100 and to the least performing agent a
score closer to -100 (higher score is better)

3. finally we decided to scale the scores in a piecewise linear function such that the
simplest baseline (do nothing) is assigned a score of 0, while the score of an agent that
finishes a scenario by solely ensuring the safety (without considering the reduction
of the system losses) is of 80. This means that 20 more points could be won by
optimizing the system energy losses to reach a 100.

6 Get started: references and material available

6.1 References: White paper & website

The organizers wrote a white paper [10] for the purpose of this competition to give everyone
the necessary background concepts to understand power network physics and operations
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Figure 12: Scaling of the score explained: on top is represented, from left to right the
operational cost the operational cost in four different cases (for four different ”agents”)
and there associated value. On the bottom is represented the same four ”agents” but
emphasizing how our scaling affect their performances.

on the one side, as well as reinforcement learning framework on the other side. It further
highlights the potential of applying Reinforcement Learning to power networks.

A challenge Websitﬂs also available, displaying more interactive materials to get fa-
miliar with this background knowledge. It present videos of the approaches used by the
winner of the first 2019 L2RPN challenge. It finally list research works that could be of
interest to participants for the competition.

6.2 Grid20p platform & documentation

Grid2op users can get familiar with the framework with getting started notebooks (that
can be run interactively thanks to MyBinder https://mybinder.org/v2/gh/rte-france/

"https://12rpn.chalearn.org
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Grid20p/master]) or downloaded from the official grid2op github https://github.com/
rte-france/grid2op. A more extensive documentation is also publicly available and
updated frequently at https://grid2op.readthedocs.io/en/latest/ to understand the
framework in more details and use it at its full potential.

6.3 Additional Material: Starting kit, Baselines, Playground and GUI

In order to reduce the the learning curve for participants to enter such a competition, we
provide various additional materials to everyone.

Starting Kit This kit contains a few explanatory notebooks (explaining the context,
the goal of the competition and also the submission process). It also provides a function
to help participants prepare on their local machine a submission for their agent, to further
be submitted successfully on the Codalab challenge platform. This comes with a working
example.

Baselines In order to help people dive more easily into machine learning, we also
made a great effort at implementing some of the most well knonw Reinforcement Learning
algorithm in a dedicated python package available at https://github.com/rte-france/
12rpn-baselines|that also benefit from an official documentation at https://12rpn-baselines.
readthedocs.io/en/latest/. Using these baselines for the competition is illustrated in
the grid2op getting started and is made as easy as possible (see figure 13| for an example).
This repository can also grow with many other models through anyone’s contribution by
using the L2RPN baseline template.

Playground New participants can also get familiar with the problem, the platform,
the data or the submission process by registrering into the less complex competitions that
are already live: a sandbox competition running at https://competitions.codalab.org/
competitions/24493 on a small IEEE 14 grid case & and the latest WCCI competition
running at https://competitions.codalab.org/competitions/24902/on a larger IEEE
grid case.

GUI (Graphical User Interface) To help diagnose the performance of the agents on this
specific power network domain, we also developed a full graphical user interface Grid2Viz
@ shown on Figure . This GUI lets users easily explore scenarios characteristics and
compare the performance of several agents on those. It allows to also inspect specific actions
taken at some timestep, to understand the context of this decision, and hence better assess
the behavior of an agent. Beside understanding the pitfalls of some agent on its episodes,
consistent and predictable behavior is in the end be essential to create trust with operators

18Grid2Viz GUI from https://github.com/mjothy/grid2viz
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import grid2op

from grid2op.Reward import L2RPNReward

from 12rpn_baselines.utils import TrainingParam, NNParam
from 12rpn_baselines.DuelQSimple import train

# define the environment
env = grid2op.make(”12rpn_casel4_sandbox”,
reward_class=L2RPNReward # change the
reward if you want

)

# use the default training parameters
tp = TrainingParam()

# this will be the list of what part of the observation I want
to keep

# more information on https://grid2op.readthedocs.io/en/latest/
observation.html#main—observation—attributes

li_attr_obs_X = ["rho”, "timestep_overflow”, ”line_status”]

# neural network architecture
observation_size = NNParam.get_obs_size(env, li_attr_obs_X)
sizes = [800, 800, 800, 494, 494, 494] # sizes of each hidden

layers
kwargs_archi = {’observation_size’: observation_size,
"sizes’': sizes,
“activs’: ["relu” for _ in range(sizes)], #

all relu activation function
"list_attr_obs”: li_attr_obs_X}

# select some part of the action
# more information at https://grid2op.readthedocs.io/en/latest/
converter.html#grid2op.Converter.IdToAct.init_converter
kwargs_converters = {”all_actions”: None,
7set_line_status”: False,
”change_bus_vect”: True,
”set_topo_vect”: False
}
# define the name of the model
nm_ = ” AnneOnymous”

# train it

train(env,
name=nm_,
iterations=10000,
save_path=" /WHERE/I /SAVED/THE/MODEL” ,
load_path=None,
logs._dir=" /WHERE/I /SAVED/THE/LOGS” ,
training_param=tp, 23
kwargs_converters=kwargs_converters,
kwargs_archi=kwargs_archi)

Figure 13: Short example on how to train a baseline coming from the 12rn-baselines github
package. This will also print, thanks to the tensorboard tool some usefull indicators to
help diagnose the training process.



on the longer term, to eventually allow the deployment of such artificial agents on real

systems
Scenario Overview Agent Overview Agent Study

Scenario 0037

2 7488/7488 115727 0 min
Agents on Agent's Survival Cumulative Total Maintenance
Scenario Reward Duration
Production Share Consumption Profile

Figure 14: Grid2viz GUI for scenario & agent analysis. Screenshot of the “scenario
selection” section to identify which episode can be interesting to study after training agents.
“scenarios overview”, “agent selection” and “agent study” are the 3 other sections.

In case of all the preceding materials are not enough, some participants may find
the need to look deeper into the actual code of the platform. We emphasize that every
components used by the platform, the powerflow solver (pandapower), the user interface,
etc. are publicly available on github under open source licenses. Participants will then
be free to inspect the code, documentation or any other materials put at their disposal in
these repositories.

7 Conclusion

In this paper, we have presented the design of ” L2RPN in a sustainable world” competition.
This competition target a real-word problem of ensuring the safety of a critical system the
powergird with a focus on real-time power network operations. We described the tasks,
metrics and all available material to make such a competition engaging, interesting and
impactful. We first hope that the Al community will join forces with the power network
community to make advances on this critical problem. This competition will hopefully
lead to already useful new approaches, possibly advancing on some aspects the related
fields of Machine Learning as well. It could develop as a new benchmark on the longer
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term. We finally hope this will help the research community to design other such real-world
challenges in the future.
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